Polar trifluoromethylation reactions. Synthesis and NMR spectra of tris(trifluoromethyl)antimony, $Sb(CF_3)_3$

Dieter Naumann*, Wieland Tyrra and Ferdinand Leifeld

Fachbereich Chemie, Universität Dortmund, Postfach 500500, D-4600 Dortmund 50 (F.R.G.) (Received April 1st, 1987)

Abstract

Bis(trifluoromethyl)cadmium complexes react with antimony trihalides in polar solvents to form $Sb(CF_3)_3$ in high yield. The reactions proceed stepwise and the mono- and bis(trifluoromethyl)antimony compounds formed as intermediates have been identified from their NMR spectra.

Introduction

The first, and until now the only, method for the preparation of $Sb(CF_3)_3$ was that described by Dale et al. in 1957 [1]. $Sb(CF_3)_3$ is the main product from the reaction of elemental antimony with CF₃I at 165–170 °C/50 bar; by-products are $Sb(CF_3)_2I$ and SbI_3 . Recently Morrison et al. [2,3], Burton et al. [4] and our group [5] have described the excellent synthetic potential of $Cd(CF_3)_2$ complexes. We showed that these complexes react either as nucleophilic trifluoromethylation reagents or as difluorocarbene reagents [6,7] depending on the reaction conditions. Subsequently we developed a new and convenient method for the high-yield synthesis of $Sb(CF_3)_3$ during our investigations on the polar trifluoromethylation reactions of $Cd(CF_3)_2$ complexes. We describe here the reactions of antimony trihalides with $Cd(CF_3)_2$ complexes, and the NMR spectra of the $SbCF_3$ compounds.

Results

We investigated the reactions of the antimony trihalides SbX_3 (X = Cl, Br, I) with $Cd(CF_3)_2$ complexes in various solvents. The reactions are very slow in diglyme and DMSO, but fast in pyridine, glyme, acetonitrile and DMF. The best solvent is acetonitrile, because there appear to be no side reactions of the $Cd(CF_3)_2$ complexes with the solvent under the conditions used. The rate of reaction of the antimony

halides SbX₃ decreases in the series X = Cl > Br > I, which corresponds to the order of the extent of dissociation of SbX₃ as indicated by conductivity measurement [8]. (The degree of dissociation corresponding to $2 \text{ SbX}_3 \rightleftharpoons [SbX_2 \cdot 2glyme]^+ + SbX_4^$ can also be assessed from molecular weight measurements.) In all cases Sb(CF₃)₃ is formed as the final product in high yields:

$$3 \operatorname{Cd}(\operatorname{CF}_3)_2 \cdot 2 \operatorname{CH}_3\operatorname{CN} + 2 \operatorname{SbX}_3 \rightarrow 3 \operatorname{CdX}_2 + 2 \operatorname{Sb}(\operatorname{CF}_3)_3 + 6 \operatorname{CH}_3\operatorname{CN}$$

The reaction can be conveniently monitored by ¹⁹F NMR spectroscopy. Initial ¹⁹F NMR signals grow up at -60.4, -52.3 and -41.2 ppm beside the signals of the CdCF₃ compounds (Fig. 1). These new signals came from the mono-, bis- and tris-(trifluoromethyl)antimony compounds. The chemical shifts and coupling constants $J(^{19}F, ^{13}C)$ do not depend on the halogen in the antimony halide used. At the end of the reaction only the signals of the CdCF₃ complexes and Sb(CF₃)₃ are observed.

Fig. 1. ¹⁹ F NMR spectrum of the reaction mixture of Cd(CF₃)₂·2CH₃CN and SbCl₃ in CH₃CN.

Table 1

SbX ₃	Sb(CF ₃) ₂ ⁺					
	δ (ppm)	${}^{1}J({}^{19}F, {}^{13}C) (Hz)^{a}$	${}^{4}J({}^{19}\mathrm{F},{}^{19}\mathrm{F})$ (Hz)	Δδ (Hz)		
SbCl ₃	- 52.1	363.2	4.1	38.7		
SbBr ₃	- 52.4	363.8	4.1	38.7		
SbI ₃	- 52.4	363.2	4.1	38.7		

 ^{19}F NMR chemical shifts and coupling constants $^1J(^{19}F,\,^{13}C)$ and $^4J(^{19}F,\,^{19}F)$ of the intermediate Sb(CF₃)₂⁺

^a The ¹³C satellites are split into quartets.

The intermediately formed mono(trifluoromethyl)antimony compound could not be identified with certainty, because no ${}^{1}J(F, C)$ coupling could be detected. It is unlikely that Sb(CF₃)Cl₂, Sb(CF₃)Br₂ and Sb(CF₃)I₂ or the conceivable cations Sb(CF₃)Cl⁺, Sb(CF₃)Br⁺ and Sb(CF₃)I⁺ would have identical chemical shifts, because the comparable tellurium compounds show significant shifts to low field in the series Te(CF₃)₂F₂ (-53.6 ppm), Te(CF₃)₂Cl₂ (-48.9 ppm) and Te(CF₃)₂Br₂ (-44.9 ppm) [9]. The formation of a solvated dication SbCF₃²⁺, which is rapidly converted into Sb(CF₃)₂⁺, is a possibility. Sb(CF₃)₂⁺ is identified by the splitting into quartets of the 13 C satellites in the 19 F NMR spectra of the solutions. The chemical shifts and the coupling constants of the Sb(CF₃)₂⁺ cation do not depend on the halogen of the antimony halide; the data are almost identical (see Table 1).

The final product of all reactions is $Sb(CF_3)_3$, which was also identified from its NMR spectra (Figs. 1 and 2). The ¹⁹F NMR spectrum of the acetonitrile solution of

Fig. 2. ¹³C NMR spectrum of neat Sb(CF₃)₃.

Sb(CF₃)₃ shows a singlet at -41.2 ppm (neat compound -39.4 ppm [10]). The ¹³C satellites are split into septets with coupling constants ¹J(¹⁹F, ¹³C) 363.2 Hz and ⁴J(¹⁹F, ¹⁹F) 4.1 Hz; the isotope shift is about 39 Hz. There is quartet of multiplets at δ 135.9 ppm in the ¹³C NMR spectrum with ¹J(¹⁹F, ¹³C) 363 Hz. The ¹³C data for the neat compound are: δ (¹³C) 131.9 ppm, ¹J(¹⁹F, ¹³C) 359.1 Hz and ³J(¹⁹F, ¹³C) 3.8 Hz (Fig. 2).

After 8 h reaction at room temperature the ¹⁹F NMR spectrum of the solution indicates only the presence of Cd(CF₃)X and Cd(CF₃)₂ complexes and Sb(CF₃)₃. Tris(trifluoromethyl)antimony is easily isolated in about 80% yield from the reaction mixture by vacuum distillation at -40 °C. From the NMR observations we propose the following reaction steps (donor molecules are omitted):

$$2 \text{ SbX}_{3} \rightleftharpoons \text{SbX}_{2}^{+} + \text{SbX}_{4}^{-}$$

$$\text{SbX}_{2}^{+} + \text{Cd}(\text{CF}_{3})_{2} \rightarrow \text{Sb}(\text{CF}_{3})\text{X}^{+} + \text{Cd}(\text{CF}_{3})\text{X}$$

$$\downarrow \uparrow$$

$$\left\{ \text{Sb}(\text{CF}_{3})^{2^{+}} \right\} + \text{X}^{-}$$

$$\text{Sb}(\text{CF}_{3})^{2^{+}} + \text{Cd}(\text{CF}_{3})_{2} \rightarrow \text{Sb}(\text{CF}_{3})_{2}^{+} + \text{Cd}(\text{CF}_{3})^{+} \xrightarrow{\text{X}^{-}} \text{Cd}(\text{CF}_{3})\text{X}$$

$$\text{Sb}(\text{CF}_{3})_{2}^{+} + \text{Cd}(\text{CF}_{3})_{2} \rightarrow \text{Sb}(\text{CF}_{3})_{3} + \text{Cd}(\text{CF}_{3})^{+} \xrightarrow{\text{X}^{-}} \text{Cd}(\text{CF}_{3})\text{X}$$

$$\text{Sb}(\text{CF}_{3})_{2}^{+} + \text{Cd}(\text{CF}_{3})^{+} \rightarrow \text{Sb}(\text{CF}_{3})_{3} + \text{Cd}^{2^{+}} \xrightarrow{2\text{X}^{-}} \text{CdX}_{2}$$

$$\text{Sb}(\text{CF}_{3})_{2}^{+} + \text{Cd}(\text{CF}_{3})^{+} + \text{SbX}_{4}^{-} \rightarrow \text{Sb}(\text{CF}_{3})_{3} + \text{CdX}^{+} + \text{SbX}_{3}$$

If a stoichiometrical excess of antimony trihalide is used, additional equilibria are formed, similar to those described by Emeléus et al. and Walaschewski [11,12] for $As(CF_3)I_2$:

$$Sb(CF_3)_2^+ + SbCl_4^- \rightleftharpoons Sb(CF_3)_2Cl + SbCl_3$$

$$2 Sb(CF_3)_2Cl \qquad \rightleftharpoons Sb(CF_3)_3 + Sb(CF_3)Cl_2$$

$$2 Sb(CF_3)Cl_2 \qquad \rightleftharpoons Sb(CF_3)_2Cl + SbCl_3$$

When the reaction mixture is stirred at room temperature for 7 d, the ¹⁹F NMR spectra indicate the formations of SbF₃ along with some pentafluoroethyl-cadmium and -antimony compounds. These new compounds are formed by partial decomposition of the SbCF₃ and CdCF₃ derivatives:

$Sb(CF_3)_3$	\rightarrow SbF ₃ + 3 CF ₂	
$Cd(CF_3)_2$	\rightarrow CdF ₂ + 2 CF ₂	[6]
$Sb(CF_3)_3 + n CF_2$	$\rightarrow \mathrm{Sb}(\mathrm{CF}_3)_{3-n}(\mathrm{C}_2\mathrm{F}_5)_n$	(n=1-3)
$Cd(CF_3)_2 + n CF_2$	$\rightarrow \mathrm{Cd}(\mathrm{CF}_3)_{2-n}(\mathrm{C}_2\mathrm{F}_5)$	(n = 1, 2)

Experimental

Chemicals. $Cd(CF_3)_2$ complexes were prepared as described previously [13]. The antimony trihalides were dried at $20^{\circ}C/10^{-3}$ Torr for about 12 h (SbCl₃: Fa. Merck, Darmstadt; SbBr₃ as in ref. 14; SbI₃ as in ref. 15, but in toluene instead of benzene).

Solvents. CH₃CN: Fa. Merck, Darmstadt, dried over P_4O_{10} ; glyme: Fa. Aldrich, Beerse, dried over CaH₂; diglyme: Fa. Merck, Darmstadt, dried over LiAlH₄; DMF: Fa. Baker, Deventer, dried over CaH₂.

NMR spectra. All spectra were recorded with a Bruker AM 300 FT NMR Spectrometer. ¹⁹F NMR: H_0 282.41 MHz; ¹³C NMR: H_0 75.47 MHz. Standards: CCl₃F (ext., ¹⁹F), TMS (ext., ¹³C).

All reactions were carried out under dry nitrogen. The antimony trihalides are dissolved in 4 ml acetonitrile at -30 °C and an equimolar amount of solid Cd(CF₃)₂ · 2CH₃CN is added. The reaction mixture is stirred for about 8 h and Sb(CF₃)₃ (m.p. -58 °C, b.p. 71.7 °C [1]) then isolated by vacuum distillation at -40 °C.

	SbCl ₃	SbBr ₃	SbI ₃	
	235	360	501	mg
	1.03	1.01	1.00	mmol
$Cd(CF_3)_2 \cdot 2CH_3CN$	501	501	501	mg
	1.51	1.51	1.51	mmol
Yield of $Sb(CF_3)_3$	269	246	272	mg
	82%	75%	83%	-

Mass spectrum of $Sb(CF_3)_3$ (70 eV, +50°C; only ¹²¹Sb containing fragments; m/e). 328 (Sb(CF_3)_3⁺, 5.6%); 309 (Sb(CF_3)_2CF_2⁺, 0.9%); 259 (Sb(CF_3)_2⁺, 29.5%); 209 (Sb(CF_3)F⁺, 53.3%); 190 (SbCF_3⁺, 25.5%); 159 (SbF_2⁺, 100%); 140 (SbF⁺, 31.0%); 121 (Sb⁺, 16.8%).

Acknowledgement

We are indebted to the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen and the Fonds der Chemischen Industrie for financial support.

References

- 1 J.W. Dale, H.J. Emeléus, R.N. Haszeldine and J.H. Moss, J. Chem. Soc., (1957) 3708.
- 2 L.J. Krause and J.A. Morrison, J. Am. Chem. Soc., 103 (1981) 2995.
- 3 C.D. Ontiveros and J.A. Morrison, Organometallics, 5 (1986) 1446.
- 4 D.M. Wiemers and D.J. Burton, J. Am. Chem. Soc., 108 (1986) 832.
- 5 H. Lange and D. Naumann, J. Fluor. Chem., 27 (1985) 309; D. Naumann and B. Wilkes, J. Fluor. Chem., 27 (1985) 115; W. Dukat and D. Naumann, Rev. Chim. Min., 23 (1986) 589.
- 6 H. Lange and D. Naumann, J. Fluor. Chem., 27 (1985) 299.
- 7 G.C. Clark, S.V. Hoskins, T.C. Jones and W.R. Roper, J. Chem. Soc., Chem. Commun., (1983) 719.
- 8 M. Usanovic and F. Terpugov, Z. Phys. Chem. A, 165 (1933) 39.
- 9 S. Herberg and D. Naumann, Z. Anorg. Allg. Chem., 494 (1982) 159.
- 10 J. Apel and J. Grobe, Z. Anorg. Allg. Chem., 453 (1979) 28.
- 11 H.J. Emeléus, R.N. Haszeldine and E.J. Walaschewski, J. Chem. Soc., (1953) 1552.
- 12 E.J. Walaschewski, Chem. Ber., 86 (1953) 272.
- 13 H. Lange and D. Naumann, J. Fluor. Chem., 26 (1984) 1.
- 14 G. Jander and J. Weis, Z. Elektrochem., 61 (1957) 1275.
- 15 J.C. Bailar and P.F. Cundy, Inorg. Synth., 1 (1939) 104.